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Introduction
Performing scientiHc research without falling victim to one of the many research design, analysis, and reporting
pitfalls can be challenging. As a medical statistician with research experience in a variety of medical
disciplines, I regularly come across (and sometimes have been the cause of) avoidable errors and inaccuracies.
Without such errors, research would, at the very least, be more informative to the readership of the research
manuscript. In this article I present a short, nonexhaustive list of issues to consider.

Research Questions and Aims
As the starting point of all scientiHc endeavors, it is incontrovertibly important to clearly deHne the research
questions and aims. The subsequent planning of the collection of useful data and formulating adequate
statistical analysis often becomes easier once it is clariHed whether the ultimate aim is to predict, explain, or
describe.  If the ultimate aim is to explain, the ideal design is often an experiment (eg, a randomized controlled
trial). Conversely, for many health-related research questions, nonexperimental data are the only viable source
of information. This type of data is subject to factors that hamper our ability to distinguish between true causes
of outcomes and mere correlations. For instance, for a nonexperimental before-after study, a change in the
health for some individuals over time is easily mistaken as evidence for the effectiveness of a particular
curative treatment, which may just be caused by regression to the mean.  To avoid such errors, studies with an
explanatory aim may beneHt from applying causal inference methodology.

Collecting Enough Data
A too-small-for-purpose sample size may result in over9tting, imprecision, and lack of power, which can ruin a
study of any kind. It is worthwhile to calculate the minimal sample size required to avoid disappointment.  It is
usually wise to be skeptical about rules of thumb for sample size.

Data Preparation
After data have been collected and cleaned, and initial data analysis  has been completed, it often requires a
large amount of self-discipline to follow the a priori deHned statistical analyses plan (if one is even available).
Indeed, it is hard not to look at every potential association in any given data set and even harder to unsee what
is possibly just a false positive once one has started data dredging.
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After data collection, some researchers seem to have the natural tendency to immediately dichotomize
measurements that were originally measured on a continuous or ordinal scale, such as dichotomizing the age
of patients into groups of young and old. This natural tendency to dichotomize, sometimes referred to as
dichotomania,  is very often a bad idea.  Various approaches exist that allow for data to be analyzed and
made insightful on a continuous scale.

The Data Are Probably Error Prone, Incomplete, and Clustered
The presence of measurement and misclassiHcation errors in data sets (present in most data sets, in my
experience) are often wrongfully considered relatively unimportant.  Some have even argued that only the
strongest effects will be detected in data that contain measurement error.  This misconception that only the
strongest effects will survive, I call the noisy data fallacy. Many statistical approaches exist that account for
measurement and misclassiHcation errors.

Likewise, some degree of missing data is almost unavoidable in any study. Methods to deal with missing data,
such as multiple imputation,  have been criticized for making strong, untestable assumptions. While this is
true, what is easily forgotten is that the assumptions made when ignoring missing data are often even
stronger.

Data are also often clustered. That is, data are often obtained from multiple centers, multiple studies, or
multiple measurements within the same individual (eg, time series). In these settings where some data are
more alike than others, it is often important to adjust the analyses accordingly.

Statistical SigniBcance
While many readers are quick to point out that a statistically signiHcant effect does not mean the effect is also
large enough to be relevant, it seems easier to forget that effects that are not statistically signiHcant may not
carry strong evidence that the effect does not exist.  Contrary to popular opinion, removing variables that are
not statistically signiHcant from the analysis may not improve interpretation  and may increase the chances of
overHtting.

Given the many pitfalls in interpretation of P values and statistical (in)signiHcance,  some researchers—and
even scientiHc journals—have called for the abandoning of statistical signiHcance.  It may then be tempting to
ignore all uncertainty in statistical analyses and base conclusions solely on the value of a single-point estimate
(eg, regression coe_cient). Such point-estimate-is-the-effect-ism  relies heavily on the assumption that the
point estimate is a valid and precise estimate of the true value, which it often is not.

Making Causal Claims
One of the keys to success for valid causal inference in nonexperimental data is the adequate handling of
confounding.  Successful adjustment for confounding means being able to distinguish potential confounders
from intermediates in the causal chain between the factor of interest and the outcome  and colliders,  which
sometimes is more easily said than done.  If the right confounders have been selected and adjusted for
through, eg, by multivariable regression analysis (notice the distinction from multivariate regression ), it is
tempting to also interpret the regression coe_cients of the confounding variables as being corrected for
confounding, which would be committing a common error known as the Table 2 fallacy.  While substantiating
causal claims is often di_cult, avoiding causal inference altogether or simply replacing words like “cause” by
“association” is not often the solution.
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Concluding Remarks
With the increasing use of machine learning and artiHcial intelligence in health care research, this incomplete
list of common research design and analysis pitfalls may seem somewhat old-fashioned. Despite the arguably
more complex nature of such analyses, many of the aforementioned issues also apply to such studies.
Among all pitfalls mentioned, the easiest pitfall to avoid is that of incomplete reporting. Avoiding that type of
error can be done simply enough by using reporting guidelines (see https://www.equator-network.org/).
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